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Abstract: The data produced by sensors of IoT devices are becoming keystones for organizations1

to conduct critical decision-making processes. However, delivering information to these processes2

in real-time represents two challenges for the organizations: the first one is achieving a constant3

dataflow from IoT to the cloud and the second one is enabling decision-making processes to4

retrieve data from dataflows in real-time. This paper presents a cloud-based Web of Things5

method for creating digital twins of IoT devices (named sentinels). The novelty of the proposed6

approach is that sentinels create an abstract window for decision-making processes to: a) get data7

(e.g. properties, events, and data from sensors of IoT devices) or b) invoke functions (e.g. actions8

and tasks) from physical devices (PD) as well as from virtual devices (VD). In this approach,9

the applications/services of decision-making processes deal with sentinels instead of managing10

complex details associated with the PDs, VDs, and cloud computing infrastructures. A prototype11

based on the proposed method was implemented to conduct a case study based on a blockchain12

system for verifying contract violation in sensors used in product transportation logistics. The13

evaluation showed the effectiveness of sentinels enabling organizations to get data from IoT14

sensors and the dataflows used by decision-making processes to convert these data into useful15

information.16

Keywords: Digital twins; IoT data; Microservices; Cloud Computing; Web of Things; Virtual17

Containers.18

1. Introduction19

IoT devices are becoming a key element in decision-making processes [1], [2], [3].20

These devices are quite common in multiple infrastructures such as Industry 4.0 [4],21

healthcare domain [5], and supply chains [6], to name a few. The data produced by these22

devices follow a lifecycle from the sensors to the edge [7], to the fog [4] and to the cloud23

[8]. In this lifecycle, data are acquired (mainly at the edge [9]), prepared and analyzed24

(typically at the fog and/or the cloud [10]), and finally converted into information for25

human consumption to use it in decision-making processes (mainly at the cloud [8]26

through end-user devices). In these types of infrastructures (any combination of edge,27

fog or cloud), the virtual containers (VC) are key to deploy services on each infrastructure28

[11–13]. These services provide dataflows from the IoT to the cloud that produce different29

types of data and information, which proves to be key for organizations to conduct30

critical decision-making processes [14–16].31

However, extracting data/information from these dataflows to deliver it to decision-32

making processes in real-time represents a huge challenge in two directions: the first one33

is verifying the accomplishment of a constant dataflow from IoT to the cloud; and the34
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second one is enabling decision-making processes to retrieve, in real-time, data/informa-35

tion from different points of dataflows. These data acquisition tasks through dataflows36

are not straightforward because of the heterogeneity of the components participating in37

a dataflow (applications, types of sensors, data formats, infrastructures [17], to name a38

few). It is desirable a manner not just to acquire data/information from dataflows, but39

also to invoke actions and tasks on the dataflow components. That could facilitate tasks40

on decision-making analysis.41

We propose to create digital twins of the IoT data acquirers (hardware, physical42

machine, or virtual container -application/microservice-) by using Web of Things cards43

(WoT)1 for decision-making process to retrieve, in real time, data/information or invoke44

actions/tasks. A digital twin is an abstract representation commonly used in Industry45

4.0 for IoT device monitoring [18]; that is, a virtual replica of objects/processes that46

simulate the behavior of their real counterparts. WoT is an initiative for representing and47

managing definitions of IoT artifacts (devices, components, applications, etc.), which48

suggests using a set of well-accepted protocols from the Semantic Web for any IoT49

artifact from the physical world to be available into the World Wide Web by creating a50

net of WoT definitions [19].51

In this paper, we present the design, implementation and evaluation of a cloud-52

based WoT method for creating Digital Sentinel Twins (DST) of IoT devices. A DST53

creates an abstract window for decision-making processes to get information/data such54

as properties, events, and data produced by sensors, and to invoke actions/tasks from IoT55

devices. An IoT device is a physical device (PD) with sensors and tasks that can be accessed56

directly or through a virtual device (VD2). Figure 1 shows an example of the process used57

by a DST to create a window for decision-making processes consumption (by either a58

human, application, or VD). As it can be seen, in this approach, the applications/services59

used in decision-making processes deal with DSTs instead of managing the complex60

details associated with the PDs, VDs, or cloud computing infrastructures.61
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Figure 1. Conceptual view of a DST.

We implemented a prototype based on this method to perform case studies sup-62

ported by GPS, temperature, and speed sensors. Additionally, using a blockchain system,63

the compliance of contracts to which these sensors are subject in the transportation64

logistics of products is continuously verified. The evaluation revealed the effectiveness65

of the DSTs for organizations to get data/information about both IoT devices and the66

1 www.w3.org/WoT [All web pages in this paper were visited on June 22, 2021].
2 A VD is an application/microservice encapsulated into a virtual container for acquiring, extracting, processing, monitoring, and analyzing data

from PDs.

www.w3.org/WoT
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whole processes converting IoT data into useful information required in decision-making67

processes.68

The contributions of this work are:69

• The design, implementation, and evaluation of a cloud-based WoT method for70

creating Digital Sentinel Twins of IoT devices.71

• The definition of the Digital Sentinel Twin concept as a mean for accessing data/in-72

formation and for invoking tasks from IoT devices.73

The rest of the paper is organized as follows: Section 2 describes the state of the art74

of works related to the topics of the proposed method; Section 3 describes the design75

and construction of a method to create DSTs for interacting with IoT devices; Section 476

describes the implementation of a prototype for the creation of DSTs; Section 5 presents77

the results of the prototype in two phases of experiments; the discussion of the obtained78

results is described in Section 6. Finally, Section 7 is presented with conclusions and79

future work.80

2. Related Work81

In the literature, there are some works about Digital Twins that are relevant to our82

approach, and these are next described.83

In the context of Digital Twins, there are different works focused on its use for84

simulation, monitoring, risk prevention, etc., for IoT devices. Some are [20], [21] and85

[22]. In [20] Assad et al. proposed a Web-based Digital Twin (WDT) architecture, with86

the purpose of improving the sustainability of industrial cyber-physical systems. In87

[21] Bevilacqua et al. proposed a Digital Twin reference model for risk prediction and88

prevention. The difference between our work and these two proposals is that we establish89

the use of virtual containers in a middle layer to access, acquire, extract, transform, etc.90

the information of the IoT devices; in this way, through a DST, we are able to represent91

both the physical (the IoT artifact) and virtual (software applications accessing the IoT92

artifact) device. In [22] Gao et al. proposed a method of simulation and modeling in real93

time for the production line of digital twins. The effectiveness of the proposed method94

is verified by taking an assembly line as an example.95

In the context of Digital Twins using virtual containers for the acquisition of infor-96

mation from IoT devices, the proposals [23], [24] and [25] are interesting. In [23] Alaasam97

et al. proposed a study on live stateful stream processing migration of Digital Twins.98

The authors emphasized the importance of two factors that influence the construction of99

stateful stream processing in systems as complex as Digital Twin: Stateful virtualization100

infrastructure and the stateful data. In [24] Tingyu et al. proposed a methodology of101

container virtualization based on simulation as a service (CVSimaaS), the authors use102

virtual containers to implement a Digital Twins system, obtaining a lower consumption103

of resources with high efficiency. Like our proposal, these two works include the concept104

of virtual containers together with Digital Twins for IoT devices. However, these two105

proposals do not add a standardized representation to the Digital Twin. Moreover, in106

our proposal, we follow the WoT guidelines for the creation of the DST as universal ac-107

cessible entities. In [25] Borodulin et al. proposed a model for simulation and prediction108

of industrial processes using Digital Twins in Digital Twin-as-a-Service (DTaaS), which109

is a way to implement an orchestration of a set of independent services and provide110

scalability for simulation.111

In the context of virtual container modeling, two proposals stand out [26,27]. In [26]112

Paraiso et al. presented an approach to model-driven management of Docker containers,113

which enables verification of the virtual container system architecture at design time.114

In [27] Piraghaj et al. proposed a simulation architecture called ContainerCloudSim,115

which was used to evaluate resource management techniques in virtual containers116

from cloud environments. Unlike these proposals, whose focus is only on virtual117

containers modeling, our proposal additionally models the environment of the IoT118

devices, adding WoT recommendations for representing them, which produces a DST119
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flexible for consumption of the virtual containers and IoT devices data. In [28] Medel120

et al. proposed a performance model for Kubernetes-based deployment using Docker121

containers. Such a model can be used as a basis to support resource management and122

application design.123

In the context of the use of virtual containers for the monitoring, simulation, and124

orchestration of IoT devices, there are two proposals [29] and [30]. In [29] Alam et al.125

proposed a modular and scalable architecture for IoT based on lightweight virtualization.126

Thus, the modularity provided, combined with the orchestration provided by Docker,127

simplifies management and enables distributed deployments, creating a highly dynamic128

system. In [30] Muralidharan et al. proposed a distributed monitoring system based on129

virtual containers for IoT applications for the management of a smart city environment.130

They achieved low latency, reliable and secure communication between large-scale131

deployment of IoT devices, with a focus on horizontal interoperability between various132

IoT applications. Both works do not use the Digital Twin concept, unlike our work133

(DST), which allows us to create a reflection with the properties and characteristics of134

the IoT device.135

Muralidharan et al. in [31] proposed a semantic Digital Twin model for interacting136

with IoT devices. The authors used virtual containers to mimic IoT devices. This is137

the most similar approach to our proposal. However, they only focus on modeling the138

physical devices (PD) and not virtual devices (VD). Instead, through the DST, we can139

represent both the physical and virtual devices.140

3. On the building of Digital Sentinel Twins for IoT devices141

A Digital Sentinel Twin (DST) is a software object produced from a data structure142

named WoTcard, which is created from data of Physical Devices (PD) or Virtual Devices143

(VD) interacting with surrounding elements for accomplishing some task involving144

sensors.145

The conceptualization of a DST is illustrated in Figure 2, which is composed of the146

concepts next described.147

DST
Digital Sentinel Twin

DfE
Dataflow Entity

PD
Physical Devices

VD
Virtual Devices

IoT
Internet of Things

VC
Virtual Container

VCS
Virtual Container System

S
Sensor

CApp
Containerized App

WoT card
Web of Things

card

Figure 2. Conceptualization of a DST.

A PD represents an IoT device interacting with sensors. A VD represents the148

software components required for creating a dataflow from an IoT device to a decision-149

making process. This means that a VD comprises components such as Virtual Containers150

(vc) or a Virtual Container System (VCS). A vc is a mechanism for logical encapsulation151

of software applications that creates environment independent applications required152

to create a dataflow. A VCS represents a set of vci built as a single solution (service)153

to perform a task into the dataflow. A Containerized Application (CApp) is in charge of154

interacting with IoT devices, and it is encapsulated into either vc or VCS.155

Thus, a DST is a versatile object for interacting in an easy manner with the complex156

and detailed structure of PD or VD. This is due to the flexibility of the WoTcard, which157

fulfills the recommendations of the W3C3. This information comes from a Dataflow Entity158

(D f E), which captures information of each internal component (any of CApp ∈ vc,159

vci ∈ VCS, or PD) as well as relationships of these components with the PD. The D f E160

is basically a data structure including information about the structure, behavior, and161

3 www.w3.org

www.w3.org
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function of VD or PD. The structure, behavior, and function are used to model the162

dataflow from the IoT device to the decision-making processes (as it captures these163

features of all entities participating in such a dataflow). The context of generation and164

usage of a DST is illustrated in Figure 3.165
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Figure 3. Context of a DST.

We considered an additional layer for standardizing the representation of a D f E166

by using WoT guidelines; this produces a WoTcard. That means, a WoTcard represents167

the information of D f E through standardized concepts about virtual containers. These168

concepts come from an ontology based on the ISO norm ISO/IEC JTC 1/SC 384. By169

following these WoT standards, a WoTcard can represent, in a well-defined manner and170

unique identity, a VD or PD, without any further adaption on D f E.171

We propose a three-phase method to create a DST for a dataflow from IoT devices172

to decision-making processes. The Figure 3 also shows the conceptual view of the stages173

of the methodology: Modeling (phase 1), where the data of the VD is acquired and its174

elements modeled; then, in the Standardization (phase 2), these elements are depicted175

into WoT cards, which are ready to be used in the Consumption (phase 3). Next, each176

stage is described more in detail.177

3.1. Phase 1: On the usage of functional modeling for building DfE178

A VD or PD can be modeled as a process to achieve a goal. The functional modeling179

[32] [33] is quite suitable for creating a representation of its structure, behavior, and180

function. This modeling has been used, over the past years, for successfully representing181

processes in multiple scenarios [34] [35] [36].182

In the proposed method, all the dataflow participants are modeled as objects com-183

posed of low-level parts; the object has an objective, and its components contribute to184

achieve together such an objective by performing tasks, such as acquiring, manufacturing,185

4 www.iso.org/committee/601355.html

www.iso.org/committee/601355.html
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preparing, or analyzing data produced by IoT sensors. The functional modeling is quite186

suitable for the IoT context where it is important not only to model the IoT devices187

but also the dataflow participants to describe the properties, events, and actions per-188

formed from the IoT devices to the decision-making processes (either at the fog or cloud).189

This approach also allowed us to model all the participants in the production of these190

dataflows (any of vci, VCS, or CApps), which, in fact, are having a behavior of chained191

processes. This model is captured into D f E, which describes the behavior (properties192

and events), function (tasks), and structure (interconnections) of all participants in the193

dataflow.194

As a preparation step of this method, we assume the existence of a vci (see VD195

in Figure 3) executing a transformation of data (task); independently of the number of196

internal vci in a dataflow, this are modeled as one DST. Lets us consider the simpler197

case, where one vci is decomposed into its function, structure, and behavior and stored198

in a D f E. This decomposition is represented by means of WoTcards, making the D f E as199

a DST ready for consumption. For the case of a VCS, occurs the same process by each200

individual vci, integrating individual functions as the overall function of the DST.201

The objective of this phase is to obtain the three main modeling elements of a vc:202

• Structure, where the components of the vc and its relationships are specified,203

• Behavior, where the values of the attributes of components are specified, according204

to the function of the vc,205

• Function, where the main goal of the vc and the tasks required to achieve it are206

specified.207

This phase starts by receiving the configuration file of a vc, in YML or YAML format.208

From this file all the data required to represent the vc is acquired.209

Next the main elements are described following a decomposition approach.210

211

Function212

The function is the goal description of the vc. If the input file is of a VCS, the function is213

modeled as a composition of functions of the internal vci. The function makes reference214

to the task executed (transformation) on the dataflow. There are six base function for a vc:215

• source, the capability to act as an infinite reservoir of data,216

• transport, the capability to transfer data from one point to another, including from217

one medium to another,218

• barrier, the capability to prevent the transfer data from one point to another, includ-219

ing from one medium to another,220

• storage, the capability to accumulate data,221

• balance, the capability to provide a balance between the total rates of incoming and222

outgoing dataflows,223

• sink, the capability to act as an infinite drain of data.224

Specialized functions can be derived from these base functions, such as produce-data,225

acquire-data, integrate-data, consume, to mention a few. All the functions may be connected226

to each other into flow paths or flow structures forming software structures.227

Thus, each vci has at least one application (Appj) performing some transformation228

(trk); defined as follows.229

VC = {vc1, vc2, . . . , vci} (1)

App = {App1, App2, . . . , Appj} (2)

Tr = {tr1, tr2, . . . , trk} (3)

∀vci ∈ VC : vci ⊃ Appj (4)

∀Appj ∈ App : Appj ⊃ trk (5)
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The trk is the key element for representing the function of a vci.230

231

A containerized application (CApp) represents one or a set of applications Appl ,232

l < j, encapsulated into a vci.233

CApp = {App1, App2, . . . , Appl} (6)

Structure
The internal structure of a vc is commonly organized as software structures (e.g. patterns,
pipelines, parallel schema, dataflow, etc.). The model of the vc must reflect this kind of
organization. Thus, the structure of the vc is defined as a logical directed acyclic graph
DAG, where nodes (N) represent the components (compi) that compose the vc, while the
interconnections between nodes (compq → compr) are established by edges (E), which
are defined as follows.

N = {comp1, comp2, comp3, compi} (7)

E = {comp1 → comp2, comp2 → comp3, compi−1 → compi} (8)

DAG = {N, E} (9)

The DAG is the key element for representing the structure of a vci.234

235

Behavior
The behavior of the vc is established by assigning values to its properties, that is, by
associating the function of the vc with the infrastructure (H) defined in the configuration
file. The vci are deployed on H ∈ I, being I the whole infrastructure (e.g. a cloud). The
consumption of a set of resources (R) of the specified infrastructure (processor -CPU-,
memory -MEM-, file system -FS-, and network -NET-) is denoted as R ∈ H per each vci,
which are observed by a set of metrics (M).

R = {CPU, MEM, FS, NET} (10)

M = {total–usage, per–core–usage, ..., mn−1, mn} (11)

H, R, and M follow a hierarchy of elements defined as:236

∀h ∈ H : h = {r, r ⊆ R} (12)

∀r ∈ R : r ⊃ value, value ∈ R, m(value) (13)

Equation 12 specifies that each physical computer h (where a vci runs) has a subset237

of physical resources r. Likewise, Equation 13 specifies that each physical resource r238

has a value denoting the performance of r for vci, and a metric m observes that value for239

performance analysis.240

Each resource r produces several values in the continuous numerical space. Thus,241

a huge set of values is generated per resource r. These values are used for computing242

Utilization Factors (UF), which inform about the status performance of a resource r.243

Although the resources produce a lot of values and data, we are interested in such values244

of UF that could initiate a risk situation. Then, according to the ISO 31000 standard5
245

for risk management [37], the values of UF are discretized in scales: low ∈ [0, 0.33),246

medium ∈ [0.33, 0.66) and high ∈ [0.66, 1]. These thresholds indicate the level of247

performance (_lvl) of each resource ri, as indicates Equation 14.248

5 www.iso.org/iso-31000-risk-management.html

www.iso.org/iso-31000-risk-management.html
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UF = {CPU_lvl, MEM_lvl, FS_lvl, NET_lvl} (14)

The UF of CPU in an instant of time t is defined by (15).

UCPU = 1−
[

TCPU − CCPU
TCPU

]
(15)

where, TCPU is the total processing capacity of the physical computer, given by the sum249

of the capacity of each of the cores and CCPU is the CPU usage at the current time.250

The UF of the file system in an instant of time t is calculated by (16).

UFS = 1−
[

f

∑
i=1

(
TFSi − CFSi

TFSi

)]
(16)

where, f is the number of partitions available on the physical computer, TFSi is the total251

capacity of the current partition on the physical computer, and CFSi is the consumption252

of the current partition at a given moment. As shown, the multiple storage partitions253

associated to a studied object are considered in Equation (16).254

The UF of memory is calculated by (17).

UMEM = 1−
[

TMEM − CMEM
TMEM

]
(17)

where, TMEM is the total memory on the physical computer, and CMEM is the memory255

consumption at time t.256

The UF of network is calculated by (18).

UNET = 1−
[

TNET − (TXNET + RXNET)

TNET

]
(18)

where, TNET is the total capacity of the network in bytes, TXNET is the number of bytes257

transmitted, and RXNET is the number of bytes received.258

259

The set UF is the key element for representing the behavior.260

261

As a result of this stage, a D f E is obtained, conformed by the three elements before
described (structure, behavior, and function). The second stage of the method operates
on this data structure.

D f E = {DAG, UF, Tr} (19)

3.2. Phase 2: Standardized access to DST by means of WoT262

At this point, a D f E provides a representation of the necessary data of the vc.
However, we require a helpful representation to interact with the vc; such an interaction
may be machine to machine or human to machine. For achieving this flexibility, this
representation is based on the Web of Things (WoT) principles [38]. This standardized
representation of a vc is named WoT card. In addition to the information captured by
D f E, metadata of the vc are also added to the WoT card. These metadata are: IP addresses,
volumes, ports, namespaces, etc. A WoT card is defined as shows Equation 20.

WoTcard = {D f E, metadata} (20)

In the case of a VCS, such elements are defined recursively to capture data about263

structures and transformations used and performed by the whole VCS and its compo-264

nents respectively.265
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According to the WoT recommendations, the generation of the WoT cards must266

be based on ontologies. In this sense, we defined and created an ontology (named VC267

Docker FU Ontology6), which can be adapted to the context of any WoT card in several268

scenarios. The VC Docker FU Ontology is used as a reference in the whole generation269

of WoT cards during the representation of vc. This ontology comes from two more270

ontologies, it extends from the VC Docker Ontology7, which extends from the VC ISO271

Ontology. The latter ontology was created from scratch according to the norm ISO/IEC272

JTC 1/SC 388, it defines all the concepts and constraints of the norm in an abstract273

manner. The VC Docker Ontology, in its original version, already defines concepts and274

constraints of virtual containers into the Docker environment, it was adapted in line with275

the VC ISO Ontology; some additional concepts and restrictions were included to fulfill276

with the ISO norm. The VC Docker FU Ontology adds concepts about the behavior related277

to infrastructure resources -CPU, MEM, FS, and NET- (such as levels of utilization and278

properties of such values), and function of virtual containers (such as base functions and279

tasks).280

Technically a WoT card is based on an abstract class named Thing, which is the base281

object for modeling in the WoT approach. It is based on the representation structure of282

Thing Description (TD)9. Thus, a WoT card is composed of three elements: i) metadata283

(of Thing), which contains interactions (how Thing can be used); ii) vocabulary, which284

contains concept definitions used into the Thing Description structure, useful for interac-285

tions; and iii) URIs, which are useful to identify resources into Thing Description, these286

are Internet links denoting relationships between Thing and other resources on the WoT.287

The WoT card was designed so that an external user can interact with it by asking288

about: properties, actions and events. Properties contain information about the Thing,289

such as behavior (UF), structure (nodes and edges of the DAG), and metadata of the290

VC. Actions refer to the functions of the Thing, including tasks (Trs) executed by its291

components. Events refer to alerts on behavior changes, such as defined by the utilization292

levels (CPU_lvl, MEM_lvl, FS_lvl, NET_lvl).293

Then, a WoT card is represented as a file following the format and structure of294

JSON-LD10. Listing 1 illustrates a portion of an example of WoT card.295

Listing 1: Thing Description (TD) structure following the JSON-LD format.

{296

"@context ": "https ://www.w3.org /2019/ wot/td/v1",297

"id": "996 ba6e ... aec5f14",298

"@type": "Thing",299

"td:title": { "@value ": "..." },300

"td:description ": { "@value ": "..." },301

"properties ": {302

"ctv:metadata ": { data{} },303

"ctv:structure ": { data{} }304

},305

"actions ": { "ctv:functions ": {input{}, output {}} },306

"events ": { "ctv:behavior ": {} }307

}308

3.3. Phase 3: Consumption309

After the WoT card has been generated and its data stored, it is ready for consump-
tion by means of a DST. For the DST to be accessible and consumed, it must become

6 Available at github.com/adaptivez/VirtualContainerOntology
7 github.com/langens-jonathan/docker-vocab/blob/master/docker.md#config
8 www.iso.org/committee/601355.html
9 It is the base model for describing any IoT Thing in the W3C Web of Things approach. Thing Description describes the metadata and interfaces of

Things. www.w3.org/TR/wot-thing-description
10 JavaScript Object Notation for Linked Data. www.w3.org/TR/json-ld11

github.com/adaptivez/VirtualContainerOntology
github.com/langens-jonathan/docker-vocab/blob/master/docker.md#config
www.iso.org/committee/601355.html
www.w3.org/TR/wot-thing-description
www.w3.org/TR/json-ld11
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an intermediary between the modeled object (vc) and the consumer. This is possible
by using a RESTful system, which can process requests with the most common HTTP
actions: GET, POST, PUT, DELETE. In this way, any artifact making REST type requests
can consume the DST. The consumption can be on properties, actions, or events, which
are defined as follows.

ConsumProperty = {WoTcard, property} (21)

ConsumEvent = {WoTcard, event} (22)

ConsumAction = {WoTcard, action[input]} (23)

Each element of the WoT card is universally identified and accepted by other310

physical and/or abstract entities (e.g. other vc, VCS, applications, devices, human-311

requests, etc.) by means of a URI11.312

For the consumption of DST properties (21), it is necessary to give the URI of the313

DST and the specific property to access. Also, in the event consumption (22), the URI314

of the DST and the event to be accessed must be given. For invoking actions (23), it315

is necessary to give the URI of the DST, the action to be performed and the input316

required for that action as parameter. In the three types of consumption, a JSON object317

is obtained as a response indicating a value if a property or event were requested, or a318

value or resultant flag if an action was invoked. Next, an example of consumption of the319

property “platform” and the function “sum” are given.320

321

Request (property):322

https://www.example.com/wotmodel/containers/123456789/platform323

324

Response:325

{ "platform" = "Docker" }326

327

Request (function):328

https://www.example.com/wotmodel/containers/123456789/sum/2/3329

330

Response:331

{ "result" = "5" }332

4. DST Prototype333

This section describes the implementation of a prototype for building DSTs based334

on the proposed method. The components of this prototype and its interactions are335

depicted in Figure 4. The components were implemented as microservices (encapsulated336

into virtual containers), coded by using Python 3.0, except for the Observation compo-337

nent, which was implemented by using JavaScript and PHP because of the nature of338

observation tasks. Next, each component is described.339

11 A URI (Universal Resource Identifier) identify, over the Internet, a resource (webpage, image, audio, video, file, IoT thing, WoT thing, etc.) by means of
a unique and universal manner.
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Figure 4. Components of DST prototype.

The prototype was deployed on the Docker platform, but DSTs may be created340

from another platform, such as LXC12, Hyper-V13, or rkt14, where a vc can be represented341

by a YML or YAML file.342

4.1. Representation343

In this service, the configuration file (YML) of the VD is parsed to build the D f E,344

capturing structure, behavior, function and metadata of the participants in a dataflow345

from an IoT device to the decision-making process. After the creation of D f E, the WoT346

cards are generated and its corresponding URIs defined. In this way, a decision-making347

process can consume the WoT card information (properties, events, and actions). The348

URIs must follow a defined namespace, as shows the Expression 24:349

http : //www.example.com/wotmodel/containers/

container_id/{property, event, action} (24)

The WoT cards along with the D f E are stored in a MySQL database.350

4.2. Listener351

This service monitors the state (behavior) of a given VD (any of vc, VCS or CApp). It352

is in charge of storing and keeping updated, in real-time, all the captured information by353

requesting status information from the Docker daemon and registering, in the database,354

each event producing a change on the VD. It also keeps a communication with the355

Supervision service to reflect any change on VD utilization levels, which are also stored356

in the database.357

12 https://linuxcontainers.org/lxc
13 https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows
14 https://www.openshift.com/learn/topics/rkt

https://linuxcontainers.org/lxc
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows
https://www.openshift.com/learn/topics/rkt
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4.3. Supervision358

This service supervises the VD and performs the acquisition of metrics through359

an external agent, called cAdvisor. This is an API that provides information about the360

metrics of the vc and the physical computers on which it runs. When acquiring the values361

of the metrics, it calculates the behavior values of VD (utilization levels of resources362

used by VD). It also responds to requests from the Listener, which is monitoring the VD363

and returns values of utilization levels of resources (high, medium, low) about CPU,364

MEM, FS, or NET, as well as the timestamp when values were captured.365

4.4. Observation366

This service offers options for observing the VD (structure, behavior, and function).367

It is a web application with intuitive interface designed for human consumption. Three368

tasks can be performed: 1) discovering of VDs, for searching the vcs or a specific CApp by369

using its properties (name, description, type, creator, owner, etc.); 2) monitoring VDs, to370

know easily the behavior of the resources used by a VD by means of warning color signs371

(red for critical, yellow for intermediate, and green for normal) and its utilization level372

values; 3) observing risk levels, to know the risk of failure of the applications by means of373

a graph denoting virtual containers in nodes and its relationships in edges.374

4.5. Consumption375

This service acts as a gateway, is in charge of attending and processing requests from376

external users (human users, software applications, virtual containers, etc.) trying to377

consume or interact with the given VD. This is performed by using an API REST for GET,378

POST, PUT, and DELETE requests. Three types of consumption are considered: properties,379

events, and actions depending on the desired consumption/invocation. For properties380

and events, this service queries the WoTcard of the VD, then gets the corresponding data381

from the database to send it to the requester. For actions, the service queries the WoTcard382

of the VD, then establishes a connection to the corresponding VD, which executes the383

action and returns the result to the requester. All responses are into a JSON file. This is384

illustrated by invoking the clustering task kmeans with the parameters k and a dataset385

named data.386

Preparation:387

URI = https://www.example.com/wotmodel/containers/123456789/kmeans388

input = {"k"=2,"data":[{"col1":1,"col2":0,"col3":2},389

{"col1":2,"col2":1,"col3":1},{"col1":0,"col2":0,"col3":2}]}390

391

Request:392

request.post(URI,input)393

394

Response:395

{"result" :396

{"cluster1":[{"col1":1,"col2":0,"col3":2},{"col1":0,"col2":0,"col3":2}],397

"cluster2":[{"col1":2,"col2":1,"col3":1}]}}398

5. Results399

The evaluation of the prototype for DST creation was conducted in two phases of400

experiments. In the first phase, the prototype was evaluated in a controlled manner401

to measure the response and service times in the construction of the DST and in its402

consumption. In the second phase, a case study is presented based on the creation of403

DST for a platform for continuous verification of contracts using a blockchain network.404

Table 1 shows the infrastructure used by the VCS created for both cases of study.405
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Table 1: IT Infrastructure used in the experiments.

ID Cores Processor MEM HDD OS

Server1 4 Intel(R) Core i5 16 GB 256 GB macOS BigSur
Server2 12 Intel(R) Xeon(R) E7-4830 128 GB 1 TB CentOS 7

5.1. Metrics406

The performance of the prototype was evaluated by capturing the following metrics.407

• Service time (ST): The time required by a microservice (VD) to complete a given408

task.409

• Response time (RT): The time observed by an end-user or a decision-making process410

to complete a given task. This time considers the initial time to get data, create411

the representation and store it in the database when an end-user builds a DST.412

This metric also measures the initial time when an end-user sends a request to413

the prototype and the time spent by DST to process it plus the time spent by it to414

deliver the results to the end-user.415

5.2. Controlled evaluation416

To conduct the evaluation of the prototype, a containerized application (CApp)417

was deployed on the previously described infrastructure, one instance of the CApp418

running on one virtual container vc. This CApp extracts data form real traces produced419

by ECG medical devices15 [11], and builds workloads at a given rate time, following a420

synthetic distribution. An input parameter defines the amount of data to be include in421

the workload.422

By using the CApp, several experiments were carried out by varying the number of423

vc and IoT data sources (ECG sensors), as well as the timing when the DST captures the424

behavior of the CApp; this latter is we call slot.425

We captured the ST and RT metrics for each experiment, each one was performed426

31 times (according to the Central Limit Theorem [39]) to capture the median value of427

both ST and RT.428

Different combinations of virtual containers (vc) and DSTs (dst) were tested, these
combinations were defined in the form vcW − dstZ, where W is the desired number of
virtual containers (vc) in the combination, and Z is the desired number of DSTs. That
means 1 (of Z) DST watches W virtual containers. For example, Expression 25 means 1
DST watching 5 virtual containers, this results in a total vc = 5. Expression 26 means 5
DST watching 5 virtual containers, this results in a total vc = 25.

vc5− dst1 (25)

vc5− dst5 (26)

These combinations also was executed by varying the slot parameter from 1, 10, to429

100 seconds. Each combination of these parameters produces a median value of ST and430

RT, which are evaluated to show the behavior of the DST costs. The total time of ECGs431

extraction was 10 minutes.432

433

434

Analysis of results435

Figure 5 shows, in vertical axis, the ST and RT by two key operations related to the436

building of a DST (GetData and StoreData tasks) produced by the different number of437

virtual containers, evaluated in these experiments. This experiment only shows the ST438

and RT observed by either end-users or a decision-making application. As it can be seen,439

15 IoT devices for acquiring electrocardiogram (ECG) signals.



Version August 20, 2021 submitted to Sensors 14 of 21

the prototype can build in just seconds DSTs for multiple VCS (17,5 secs for creating440

DSTs for 100 applications, each connected to an IoT data source). This time is only441

spent by the prototype once, which means that this is affordable for many environments.442

Moreover, the GetData task (parsing YML files and creating the D f E), as it was expected,443

was the more significant task in the building of a DST, whereas StoreData task (indexing444

the D f E in a database) results were not significant for the DST building RT.445

Figure 6 shows, in vertical axis, the ST (for the Representation task) spent by the446

building of the DSTs according to the sequences of DSTs and virtual containers evalu-447

ated in these experiments (horizontal axis). As expected, the more the number of DSTs,448

the more the ST spent by the prototype to create the representation of these DSTs.449
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Figure 7 shows, in vertical axis, the RT spent by the DSTs to retrieve information450

about VDs and PDs to the end-user (in this case a DST client application) per different451

sequences of DST and virtual containers (horizontal axis) for different time slot. It can452

be observed that increasing the number of vcs per DST also increases the number of453
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requests performed by the DSTs per slot, increasing RT. The RT obtained is acceptable454

as soft real time [40].455
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Figure 7. Response time in DST consumption

5.3. A case study: blockchain network for continuous contract verification456

The previous evaluation showed the costs in time associated to create DSTs for457

decision-making process to get IoT data (by using simple REST API) without dealing458

with technology elements from IoT and cloud, just invoking tasks on DSTs.459

We also conducted a case study to show the flexibility of DSTs into a dataflow460

composed by an end-user (human, device or application), DSTs, virtual containers461

(VDs), and IoT devices with sensors attached (PDs). This dataflow was emulated from462

a real trace of a logistic transportation of a supply chain of food, which is used by a463

VCS implementing a blockchain service for the verification of contract violations by464

monitoring GPS, temperature, and speed sensors of a set of transportation trucks [41].465

Figure 8 shows the conceptual representation of this case study. As it can be seen,466

two DSTs were created for two VCS (including three virtual containers). The DSTs467

deliver to end-users or applications (decision-making processes) information about VDs468

(the system) and PDs (physical devices).469
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Figure 9 shows, in the horizontal axis, a timeline of the tasks performed by partici-470

pants on the dataflow (vertical axis) of verifying contract violations: Build (tsk1), Data471

Acquisition of Temperature (tsk2), Data Acquisition of Speed (tsk3), Data Acquisiton of GPS472

(tsk4), Send Request (tsk5), Get Data (tsk6), and Deliver Request (tsk7). The timeline for473

this case study was 10 minutes. In tsk1 the prototype builds two DSTs. Then, the data474

acquisition was carried out from IoT sensors (tsk2, tsk3, and tsk4) by the virtual contain-475

ers, which were stored on the blockchain network. Also during the timeline, every 10476

seconds, the virtual containers verified, registered, and reported contract violations on477

the blockchain network: first the consumer requests to DST (tsk5), then the blockchain478

is queried by the corresponding virtual container (tsk6), and finally the DST responses479

to the consumer (tsk7). As it can be seen, the impact of the DST creation (tsk1) and480

communications (tsk5 and tsk7) is not significant in comparison with the time spent by481

get data from the blockchain network (tsk6) and the data transfer from sensors to the482

blockchain network (tsk2, tsk3, and tsk4). Figure 9 also shows that DST can capture the483

data produced by both, VDs (tsk6), and PDs (tsk2, tsk3, and tsk4).484
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Figure 9. Time of tasks in the case study.
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We observed that DSTs were able to inform to end-users, on demand and in real485

time, about contract violations. From the total number of requests (47) to the DSTs, just486

in 3 requests the DSTs informed contract violations.487

The DSTs can also deliver, on demand and in real time, the data rate produced488

and received by PDs to the end-user. That means, the behavior of the PDs can be489

known by end-users in decision-making time by analyzing these data. In this case study490

the prototype showed a regular data production from sensors, with a reduction and491

increment of the data rate. This could imply to a potential bottleneck in the reception of492

data or a possible inconsistent data production from sensors at IoT devices. Figure 10493

shows the received data amount of 47 user requests to the DSTs.494
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Figure 10. Kilobits received in the requests.

The averages of consumed resources r (processor -CPU-, memory -MEM-, file
system -FS-, and network -NET- ) by the prototype in the case study are shown in Table
2. To obtain them, first the consumption of such resources were measured before and
during the case study, this was carried out 32 times (w = 32). Then the differences
between initial (rkini

) and final (rk f in
) values were computed and added. Finally the

average of the differences were obtained, as shows Equation 27.

rkavg =
∑w

i=1

(
rk f ini

− rkinii

)
w

(27)

Table 2: Average values of resource consumption.

CPU (%) MEM (megabytes) FS (megabytes) NET (megabits/sec)

2.306 33.884 (0.02%) 20.109 9.556

It is important to note that the blockchain network is not of exclusive use of this495

prototype, it can be consumed by external applications. This VCS (blockchain network)496

can be replaced by other VCS (e.g. a data analytics system), in such case the DST must497

deliver the data produced by this new VCS without performing deep changes, but498

rebuilding the D f E of the DST.499

6. Discussion500

In this paper, we demonstrated the viability of the proposed method by applying501

the implemented prototype in two scenarios. The first one is regarding a controlled502

evaluation for extracting data from traces produced by ECG medical devices. This503

scenario showed the Response and Service Time performance during the building and504
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consumption of DSTs. The second scenario demonstrated the flexibility of DSTs to get505

information (verification of contract violations on a blockchain network) in real-time506

from a dataflow of transportation logistics.507

The obtained prototype was tested on distinct scenarios for intermediate and partial508

experiments before obtaining the results reported in this paper. In all these experiments,509

the prototype showed good performance in several tasks, such as discovering vcs,510

monitoring VCS, supervising CApps through created DSTs. Several interactions were511

performed on these DSTs, accessed by other CApps, human requests, and software512

applications.513

According to the results of the controlled evaluation (subsection 5.2), we can see that514

augmenting the number of vcs per DST increases exponentially the Response Time for515

both the building and consumption of DSTs. The building of 1 DST with 5 vc (vc5-dst1)516

takes an average Response Time of 0.90 seconds (see Figure 5). The consumption of517

the DST with the same configuration (vc5-dst1) takes an average Response Time of 0.52518

seconds (see Figure 7).519

The case study (subsection 5.3) supports the results achieved in the controlled520

evaluation. In this case, the average Response Time during the building of the DSTs521

(sequence vc3-s2) was 1.2 seconds (see Figure 9). For the consumption of the DSTs the522

average Response Time was 13 seconds (see Figure 9). However, it is important to note523

that from these 13 seconds, 10 seconds correspond to the communication to/from the524

blockchain networks for obtaining data. Thus, we can conclude that 3 seconds is the real525

Response Time for the consumption.526

In all the experiments of the prototype, the interaction with the created DSTs was527

easy because complex requests were not necessary. The benefits of using the created528

DSTs are as follows:529

• Standardized interaction. Since a WoT card is based on W3C guidelines, a DST can530

be consumed by distinct users (humans, devices, or applications),531

• Easy consumption. Through a DST, users can: a) access to data, properties, and532

events; and b) invoke tasks and functions, both directly on target devices (VDs or533

PDs),534

• Flexible access. A DST can be exploited by external users by means of RESTful535

requests from distinct locations to the one of the DST environment,536

• Decision-making aid. DSTs can be used as a mean in decision-making tasks (dis-537

covering, classification, monitoring, supervising, migration, to mention a few),538

• Generation of DST. The building of DSTs is quite simple and transparent if a539

well-structured file configuration (YML or YAML) is given,540

• Minimal required resources. The execution of DSTs requires minimal infrastructure541

resources (CPU, MEM, FS, and NET).542

7. Conclusions543

This paper presented a cloud-based WoT method for creating digital twins of IoT544

devices, named (Digital Sentinel Twins -DST-). A DST is an object that abstracts physical545

or virtual devices to operate over them by consuming its properties, events, or invoking546

its functions. This object has the advantage that by investing minimal time and resources,547

an external user (human, software application, or virtual devices) can access to all the548

data and functions of those devices. That is useful for interacting with IoT devices in549

several scenarios.550

The method comprises three phases: a) Modeling, where the data of the VD or551

PD are acquired, with these elements that device is modeled, generating a Dataflow552

Entity (DfE); b) Standardization, where the elements of the model are represented into a553

standardized representation named WoT card; this representation follows the guidelines554

of the Web of Thing to make its elements universally accessible by means of URIs; and555

c) Consumption, the advance of the WoT card generated is that it can be consumed in556
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external scenarios by distinct users (human, software applications, or virtual devices) in557

different ways.558

Based on the proposed method, a functional prototype was implemented. This559

prototype was tested by creating DSTs in several experiments considering distinct560

scenarios of use (discovering and monitoring of VCs and applications, supervising561

CApps, etc.). By means of the created DSTs, it was possible to consume data and invoke562

functions of virtual and physical devices. In this paper, two experiments were reported563

to demonstrate the viability of the proposed method, creating flexible and useful DSTs.564

The first experiment was to show the spent time for creating and consuming DSTs. The565

second one was to demonstrate the use of DSTs into a scenario of a blockchain network566

for verifying contract violation on sensors used in product transportation logistics.567

A DST creates an abstract window for decision-making processes to get informa-568

tion/data from virtual and physical devices. It acts as a useful mechanism to interact569

with those devices in several scenarios. Its creation is not expensive in terms of time570

and computational resources, and it produces a access to data and functions of the571

target devices. These characteristics may be obtained without managing complex details572

associated to virtual and physical devices and cloud computing infrastructures.573

Nevertheless the benefits obtained by the proposed method, it is important to574

mention some limitations of the proposed work:575

• The creation of DSTs only can be achieved if a well-structured configuration file is576

given, in YML or YAML format,577

• A DST has no other way to consume it that RESTful requests,578

• When target devices (VDs or PDs) and DSTs reside in the same infrastructure, the579

Response Time of performed tasks increases exponentially.580

As further work, the inclusion of security aspects into the DSTs is considered; this581

will enable its manageability and control while maintaining its flexibility of use.582
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